Learning plan

MISSION CONTROL REPORT B: An Earth vs Mars comparison

In Mission Control Report B you will compare and contrast the features of Earth and Mars as well as the Goldilocks Conditions for human life on Earth and Mars.

To get started, read carefully through the Mission Control Report B learning goals below. Make sure you tick each of the check boxes to show that you have read all your Mission Control Report B learning goals.

As you read through the learning goals you may come across some words that you haven’t heard before. Please don’t worry. By the time you finish Mission Control Report B you will have become very familiar with them!

You will come back to these learning goals at the end of Mission Control Report B to see if you have confidently achieved them.

Junior 3.3 Pre



2Al

Activity 3.3.1 Objectives

Learning Goals

  • Compare and contrast the features of Earth and Mars

Introduction

Welcome to your second Mission Control Report!

In Mission Control Report A you became a Mars expert by researching Mars and writing an information report. You have since been learning a lot about Earth and the Goldilocks conditions for life on our planet.

Before you can proceed any further with your Mission, you need to show Mission Control that you have a thorough understanding about the similarities - and most importantly - the differences between Earth and Mars.

In Mission Control Report B you will need to complete an Earth vs Mars Venn diagram and an Earth vs Mars Goldilocks conditions table. You will not be able to proceed any further with your Mission until this Report has been successfully completed.


Mission video 18: Earth vs Mars

In Mission video 18: Earth vs Mars, the Mission Control Teams explore the differences and similarities between Earth and Mars and help you decide whether Mars has the Goldilocks conditions for life.

While you watch Mission video 18: Earth vs Mars look out for the answers to the following questions:

  1. 1. What did Earth and Mars have in common from the beginning?
  2. 2. Why did Earth and Mars evolve differently?

Your teacher will instruct you whether you will answer the questions: as part of a class discussion; as a group/paired discussion; or independently by writing your answers in your Big History School Junior journal (if you have been provided with one).

You will watch this same video in a following activity and will then focus on the part in the video about the Goldilocks conditions for life.


Download video


Activity 3.3.1 Review

Conclusion

Now that you have a bit more comparative information on Earth and Mars, you will complete a Venn diagram which will highlight the similarities and, even more importantly, the differences between Earth and Mars.


Go to Activity 3.3.2   »

Course Glossary

accretion

The gradual process of matter being pulled together by gravity to make larger and larger clumps of matter.

adaptation

A special skill or physical feature which helps a species to survive and thrive in its environment. For example, a chameleon changing colour to camouflage itself.

aerial view

A view of something from the sky looking down.

agriculture

Also referred to as farming, agriculture is the practice of growing crops and raising animals. It is an innovation which has allowed human societies to expand and thrive.

AI

Artificial Intelligence (AI) is a type of technology which can perceive things, interpret them and make decisions in a similar way to humans.

amphibian

Animals that evolved from fish to have gills so that they can live in water and also live and breathe on land.

anthropologist

A scientist who studies humans and human behaviour.

asteroids

Rocky bodies which are too small to be called planets.

astronomer

A scientist who studies the Universe and everything in it.

atmosphere

A thin layer of gases, otherwise known as air, that surrounds Earth and other planets.

atoms

Tiny particles which make up everything in the Universe.

authority

Someone who knows a lot about a subject and whose views are respected.

battery storage

A large battery that stores electrical energy which can then be used when other energy sources are not available.

Big Bang theory

Theory about how the Universe began 13.8 billion years ago. All matter, time, space and energy came from the Big Bang.

Big History

The history of the entire Universe beginning 13.8 billion years ago.

biochemist

A scientist who studies the chemistry of living things.

biologist

A scientist who studies living things.

black hole

An area in space where gravity is so strong that nothing can escape from it – not even light.

brainstorming

A creative strategy for thinking about and sharing ideas to solve a challenge or task.

CBR

Cosmic Background Radiation (CBR) is the radiation left over from the initial energy of the Big Bang. It can be seen through powerful space telescopes.

chemical compounds

Chemical elements which have combined with different chemical elements. For example, hydrogen can combine with oxygen to create the chemical compound water (H2O).

chemical elements

Pure substances which are made from a single type of atom. For example, Helium.

chemist

A scientist who studies the substances that make up all the matter in the Universe.

claim

Information which is presented as fact – not an opinion.

cognitive

To do with mental activity such as thinking, using logic or remembering.

collective learning

The human ability to store and share and build on information from generation to generation.

comets

Balls of frozen gases, rock and dust which orbit the Sun.

community

A group of people who live together. They help each other and work together to solve problems.

compare

To look at what two or more things have in common with each other.

continental drift theory

A theory which states that the Earth’s continents were once joined together in one supercontinent, then broke up and slowly drifted apart.

contrast

To look at how two or more things are different to each other.

convergent boundary

Where two tectonic plates move towards each other.

cosmologist

A scientist who studies the structure and history of the Universe.

creative thinking

Thinking of new ways to solve problems, generate new explanations and/or create something original.

Critical thinking

Thinking which doesn’t rely on simply accepting what someone has said. It involves questioning, using logic and seeking information from experts before drawing a conclusion.

cross section

A view of something as if it has been sliced through with a knife.

digital technology

A term which covers electronic technologies such as computers, tablets and mobile phones.

disciplines

Different areas of knowledge, for example, natural sciences.

divergent boundary

Where two tectonic plates slide apart from each other.

Earth’s core

At its centre, Earth contains a solid inner core and a liquid outer core made of iron and nickel.

Earth’s crust

The layer that floats on top of the mantle and is made of lighter weight rocks and minerals.

electrical technology

Technologies which use electricity as their main power source, for example, light bulbs, electric motors and television.

energy sources

A resource which can be used to provide power. For example, fossil fuels like coal and oil; renewable resources like solar and wind or uranium for nuclear power.

engineer

An expert who designs and builds machines and structures.

evidence

Information which may support or disprove a claim.

evolution

The theory of evolution explains how all the species alive today generated from the first simple life forms on Earth.

exoplanets

Planets which orbit stars outside of our solar system.

expert

A person with a special skill or knowledge in a particular area.

flyby

A path followed by a spacecraft which has been sent close enough to a planet to record scientific data.

fossil fuels

A carbon- based material such as coal, oil, or natural gas that can be used as an energy source. Fossil fuels were originally formed when the remains of living organisms were buried and broken down by intense heat and pressure over millions of years.

gas giants

The four large outermost planets – Neptune, Uranus, Saturn and Jupiter – which are mostly made of lighter chemical elements like Hydrogen and Helium.

geologist

A scientist who analyses rocks, minerals and landforms.

Goldilocks conditions

The ‘just right’ conditions for life to exist. For example, Earth has the right temperature range, a protective atmosphere and liquid water.

gravity

The energy force which tries to pull two objects toward each other. The bigger an object is, the stronger its gravitational pull.

Homo sapiens

Modern humans who first appeared 300,000 years ago. We are homo sapiens.

hunters and gatherers

Human societies which move from place to place to hunt meat and gather fruit and vegetables to survive.

industrial technology

Machines which operate on a large scale by using energy sources such as water, steam power, oil and coal.

innovation

Using existing knowledge to come up with new technologies or new ways of doing things.

intelligent life

Beings from other planets who are able to think, learn and understand. Scientists continue to search for intelligent life out in the Universe.

intuition

A ‘gut feeling’ that a claim may be true or false.

Jovian planets

The term Jovian planets refers to the large gassy planets furthest from the Sun - Neptune, Uranus, Saturn and Jupiter. They are also known as gas giants.

Karman line

An imaginary line 100 kms above the Earth’s crust where it has been internationally agreed the Earth’s atmosphere ends and space begins.

KWHLAQ chart

A visible framework which uses a series of step-by-step questions to provide guidance through the creative thinking process.

lander

A spacecraft which has been designed to make a soft landing on a planet or moon etc.

logic

Carefully thinking about a claim to decide whether it makes sense.

mantle

The layer that surrounds the Earth’s core and is made of minerals and rocks which slowly flow in a sludge of melted iron.

matter

Everything around us that has weight and takes up space. All matter is made up of atoms.

meteoroids

Otherwise known as shooting stars, meteoroids are small space rocks which burn up as they enter Earth’s atmosphere.

module

A self-contained unit which can be joined together with other units to build something more complex.

multi-planetary species

A species which lives on more than one planet. Humans could become the first known multi-planetary species by establishing a human habitat on Mars.

multicellular organisms

A complex organism which is made up of more than one cell. For example, animals and plants.

natural selection

The process by which individuals in a species who have more successful adaptations have more children, therefore passing their successful adaptations on to future generations.

nuclear fusion

The process of hydrogen atoms being crushed together in a star’s hot centre, releasing heat and energy for billions of years.

orbiter

A spacecraft designed to orbit a planet and collect scientific data over a long period of time.

overpopulation

When a population grows too big for the available resources, for example, food. Humans have, in the past, solved potential problems through innovations such as agriculture.

ozone layer

An invisible layer in Earth’s upper atmosphere which helps to protect us from the Sun’s harmful ultra-violet rays.

periodic table

A diagram of all the chemical elements in the Universe. It was created by a Russian chemist named Dmitri Mendeleev.

quasars

Quasi Stellar Objects (Quasars) are believed to be the brightest and most distant objects in the Universe.

radiation

The transfer of energy (heat, sound or light) through waves. It can come from cosmic rays or from the Earth. Too much exposure to radiation is harmful to humans.

redshift

When a star or galaxy moves away, its light waves are stretched out and it has a red glow. This is called redshift and provides evidence that the Universe is expanding.

robotics

A type of technology which allows machines to be programmed to move and complete set tasks.

rocky planets

The four small inner planets – Mercury, Venus, Earth and Mars – which are mostly made of heavier chemical elements like iron.

rover

A moving robot which is sent to the surface of another planet to explore, collect scientific data and samples.

self-sustaining

Being able to exist for a long time without outside help by using resources responsibly.

single-celled organisms

A simple organism which is made up of only one cell. For example, simple bacteria.

singularity

The extremely small point which contained the ingredients for everything in the Universe. Everything was crushed together in this singularity at the moment of the Big Bang.

sol

The name of a solar day on Mars, which is 24.65 hours.

star

A massive sphere of very hot gas which makes its own light and energy through nuclear fusion.

supernova

The spectacular explosion which occurs when a massive star dies. It blows chemical elements out into the Universe.

survive

To be able to continue to live. For example, having enough food to avoid dying of starvation.

technology

New tools or methods, developed through the use of scientific knowledge, which can be used to solve problems.

tectonic plates

The large solid-rock moving pieces which make up the Earth’s crust.

thrive

To be able to grow, be successful and become stronger. For example, humans thrive when they are part of a connected community.

timeline

A graphic which includes a list of events placed in the order that they happened.

transform boundary

Where two tectonic plates meet and try to move past each other.

uranium

A chemical element which is found in the Earth’s crust and is used as an energy source in nuclear power plants.

venn diagram

A visual graphic which can be used to compare and contrast two different things.

white dwarf

When a non-massive star runs out of fuel for nuclear fusion it collapses into itself. The leftover core is a compact star called a white dwarf.

x-ray telescope

A type of telescope which works by receiving x-ray signals. It is mainly used to observe space objects and events such as the Sun, stars and supernovae.

Yucatan Peninsula

Location of the Chicxulub Crater where a giant meteor landed 66 million years ago. Scientists think this meteor strike led to the extinction of the dinosaurs.

zinc

One of the most common chemical elements in the Earth’s crust.

2Al

Activity 3.3.2 Objectives

Learning Goals

  • Compare and contrast the features of Earth and Mars
  • Create an Earth vs Mars Venn diagram

Introduction

In this activity you will be using a Venn diagram to organize all of that interesting information you’ve gathered about Earth and Mars.

A Venn diagram is simply a visual graphic which you can use to compare and contrast two different things:

  • To compare is to look at what things have in common.
  • To contrast is to look at how they are different to each other.

Before you begin though, you will refer to the Reading: Earth vs Mars which summarizes a lot of the information you heard in Mission video 18: Earth vs Mars.


Reading: Earth vs Mars

Your teacher will give you a copy of the Reading: Earth vs Mars. Take 5 minutes to read it carefully and use a highlighter to highlight the main points.

You will use the information in this Reading, along with your Mars Information Report research and everything you’ve learned about Earth in Mission Phase 3 to create your Venn diagram.

Reading 3.3.2_ Earth vs Mars - US


Venn diagram: Earth vs Mars

Your teacher will give you a copy of the Venn diagram: Earth vs Mars worksheet which provides a template for you to create your Venn diagram.

If you’re still not quite sure how to complete a Venn diagram, take a look at the Venn diagram: Earth vs Venus example in Helpful Resources.

Now it’s your turn. Refer to the Venn diagram: Earth vs Mars worksheet and follow the instructions:

  • Step 1. Write ‘Earth’ above one circle and ‘Mars’ above the second circle.
  • Step 2. Where the circles overlap write what the two planets have in common.
  • Step 3. In the remaining area of the circles students write what is different about each planet.

3.3.2 - Venn Diagram -Earth vs Mars

Helpful Resources

Venn Diagram: Earth vs Venus Example


Activity 3.3.2 Review

Conclusion

Once you’ve completed your Venn diagram, take a look at it and notice:

  • Do Mars and Earth have more in common or are they more different than you thought?
  • What’s important about the differences? And what impact would those differences have on your Mission?

Your teacher will instruct you whether you will discuss your responses to these questions as part of a class or, if you are working on the Mission as a group, with the other members of your Mission Team.


Go to Activity 3.3.3   »

Course Glossary

accretion

The gradual process of matter being pulled together by gravity to make larger and larger clumps of matter.

adaptation

A special skill or physical feature which helps a species to survive and thrive in its environment. For example, a chameleon changing colour to camouflage itself.

aerial view

A view of something from the sky looking down.

agriculture

Also referred to as farming, agriculture is the practice of growing crops and raising animals. It is an innovation which has allowed human societies to expand and thrive.

AI

Artificial Intelligence (AI) is a type of technology which can perceive things, interpret them and make decisions in a similar way to humans.

amphibian

Animals that evolved from fish to have gills so that they can live in water and also live and breathe on land.

anthropologist

A scientist who studies humans and human behaviour.

asteroids

Rocky bodies which are too small to be called planets.

astronomer

A scientist who studies the Universe and everything in it.

atmosphere

A thin layer of gases, otherwise known as air, that surrounds Earth and other planets.

atoms

Tiny particles which make up everything in the Universe.

authority

Someone who knows a lot about a subject and whose views are respected.

battery storage

A large battery that stores electrical energy which can then be used when other energy sources are not available.

Big Bang theory

Theory about how the Universe began 13.8 billion years ago. All matter, time, space and energy came from the Big Bang.

Big History

The history of the entire Universe beginning 13.8 billion years ago.

biochemist

A scientist who studies the chemistry of living things.

biologist

A scientist who studies living things.

black hole

An area in space where gravity is so strong that nothing can escape from it – not even light.

brainstorming

A creative strategy for thinking about and sharing ideas to solve a challenge or task.

CBR

Cosmic Background Radiation (CBR) is the radiation left over from the initial energy of the Big Bang. It can be seen through powerful space telescopes.

chemical compounds

Chemical elements which have combined with different chemical elements. For example, hydrogen can combine with oxygen to create the chemical compound water (H2O).

chemical elements

Pure substances which are made from a single type of atom. For example, Helium.

chemist

A scientist who studies the substances that make up all the matter in the Universe.

claim

Information which is presented as fact – not an opinion.

cognitive

To do with mental activity such as thinking, using logic or remembering.

collective learning

The human ability to store and share and build on information from generation to generation.

comets

Balls of frozen gases, rock and dust which orbit the Sun.

community

A group of people who live together. They help each other and work together to solve problems.

compare

To look at what two or more things have in common with each other.

continental drift theory

A theory which states that the Earth’s continents were once joined together in one supercontinent, then broke up and slowly drifted apart.

contrast

To look at how two or more things are different to each other.

convergent boundary

Where two tectonic plates move towards each other.

cosmologist

A scientist who studies the structure and history of the Universe.

creative thinking

Thinking of new ways to solve problems, generate new explanations and/or create something original.

Critical thinking

Thinking which doesn’t rely on simply accepting what someone has said. It involves questioning, using logic and seeking information from experts before drawing a conclusion.

cross section

A view of something as if it has been sliced through with a knife.

digital technology

A term which covers electronic technologies such as computers, tablets and mobile phones.

disciplines

Different areas of knowledge, for example, natural sciences.

divergent boundary

Where two tectonic plates slide apart from each other.

Earth’s core

At its centre, Earth contains a solid inner core and a liquid outer core made of iron and nickel.

Earth’s crust

The layer that floats on top of the mantle and is made of lighter weight rocks and minerals.

electrical technology

Technologies which use electricity as their main power source, for example, light bulbs, electric motors and television.

energy sources

A resource which can be used to provide power. For example, fossil fuels like coal and oil; renewable resources like solar and wind or uranium for nuclear power.

engineer

An expert who designs and builds machines and structures.

evidence

Information which may support or disprove a claim.

evolution

The theory of evolution explains how all the species alive today generated from the first simple life forms on Earth.

exoplanets

Planets which orbit stars outside of our solar system.

expert

A person with a special skill or knowledge in a particular area.

flyby

A path followed by a spacecraft which has been sent close enough to a planet to record scientific data.

fossil fuels

A carbon- based material such as coal, oil, or natural gas that can be used as an energy source. Fossil fuels were originally formed when the remains of living organisms were buried and broken down by intense heat and pressure over millions of years.

gas giants

The four large outermost planets – Neptune, Uranus, Saturn and Jupiter – which are mostly made of lighter chemical elements like Hydrogen and Helium.

geologist

A scientist who analyses rocks, minerals and landforms.

Goldilocks conditions

The ‘just right’ conditions for life to exist. For example, Earth has the right temperature range, a protective atmosphere and liquid water.

gravity

The energy force which tries to pull two objects toward each other. The bigger an object is, the stronger its gravitational pull.

Homo sapiens

Modern humans who first appeared 300,000 years ago. We are homo sapiens.

hunters and gatherers

Human societies which move from place to place to hunt meat and gather fruit and vegetables to survive.

industrial technology

Machines which operate on a large scale by using energy sources such as water, steam power, oil and coal.

innovation

Using existing knowledge to come up with new technologies or new ways of doing things.

intelligent life

Beings from other planets who are able to think, learn and understand. Scientists continue to search for intelligent life out in the Universe.

intuition

A ‘gut feeling’ that a claim may be true or false.

Jovian planets

The term Jovian planets refers to the large gassy planets furthest from the Sun - Neptune, Uranus, Saturn and Jupiter. They are also known as gas giants.

Karman line

An imaginary line 100 kms above the Earth’s crust where it has been internationally agreed the Earth’s atmosphere ends and space begins.

KWHLAQ chart

A visible framework which uses a series of step-by-step questions to provide guidance through the creative thinking process.

lander

A spacecraft which has been designed to make a soft landing on a planet or moon etc.

logic

Carefully thinking about a claim to decide whether it makes sense.

mantle

The layer that surrounds the Earth’s core and is made of minerals and rocks which slowly flow in a sludge of melted iron.

matter

Everything around us that has weight and takes up space. All matter is made up of atoms.

meteoroids

Otherwise known as shooting stars, meteoroids are small space rocks which burn up as they enter Earth’s atmosphere.

module

A self-contained unit which can be joined together with other units to build something more complex.

multi-planetary species

A species which lives on more than one planet. Humans could become the first known multi-planetary species by establishing a human habitat on Mars.

multicellular organisms

A complex organism which is made up of more than one cell. For example, animals and plants.

natural selection

The process by which individuals in a species who have more successful adaptations have more children, therefore passing their successful adaptations on to future generations.

nuclear fusion

The process of hydrogen atoms being crushed together in a star’s hot centre, releasing heat and energy for billions of years.

orbiter

A spacecraft designed to orbit a planet and collect scientific data over a long period of time.

overpopulation

When a population grows too big for the available resources, for example, food. Humans have, in the past, solved potential problems through innovations such as agriculture.

ozone layer

An invisible layer in Earth’s upper atmosphere which helps to protect us from the Sun’s harmful ultra-violet rays.

periodic table

A diagram of all the chemical elements in the Universe. It was created by a Russian chemist named Dmitri Mendeleev.

quasars

Quasi Stellar Objects (Quasars) are believed to be the brightest and most distant objects in the Universe.

radiation

The transfer of energy (heat, sound or light) through waves. It can come from cosmic rays or from the Earth. Too much exposure to radiation is harmful to humans.

redshift

When a star or galaxy moves away, its light waves are stretched out and it has a red glow. This is called redshift and provides evidence that the Universe is expanding.

robotics

A type of technology which allows machines to be programmed to move and complete set tasks.

rocky planets

The four small inner planets – Mercury, Venus, Earth and Mars – which are mostly made of heavier chemical elements like iron.

rover

A moving robot which is sent to the surface of another planet to explore, collect scientific data and samples.

self-sustaining

Being able to exist for a long time without outside help by using resources responsibly.

single-celled organisms

A simple organism which is made up of only one cell. For example, simple bacteria.

singularity

The extremely small point which contained the ingredients for everything in the Universe. Everything was crushed together in this singularity at the moment of the Big Bang.

sol

The name of a solar day on Mars, which is 24.65 hours.

star

A massive sphere of very hot gas which makes its own light and energy through nuclear fusion.

supernova

The spectacular explosion which occurs when a massive star dies. It blows chemical elements out into the Universe.

survive

To be able to continue to live. For example, having enough food to avoid dying of starvation.

technology

New tools or methods, developed through the use of scientific knowledge, which can be used to solve problems.

tectonic plates

The large solid-rock moving pieces which make up the Earth’s crust.

thrive

To be able to grow, be successful and become stronger. For example, humans thrive when they are part of a connected community.

timeline

A graphic which includes a list of events placed in the order that they happened.

transform boundary

Where two tectonic plates meet and try to move past each other.

uranium

A chemical element which is found in the Earth’s crust and is used as an energy source in nuclear power plants.

venn diagram

A visual graphic which can be used to compare and contrast two different things.

white dwarf

When a non-massive star runs out of fuel for nuclear fusion it collapses into itself. The leftover core is a compact star called a white dwarf.

x-ray telescope

A type of telescope which works by receiving x-ray signals. It is mainly used to observe space objects and events such as the Sun, stars and supernovae.

Yucatan Peninsula

Location of the Chicxulub Crater where a giant meteor landed 66 million years ago. Scientists think this meteor strike led to the extinction of the dinosaurs.

zinc

One of the most common chemical elements in the Earth’s crust.

2Al

Activity 3.3.3 Objectives

Learning Goals

  • Compare and contrast Goldilocks conditions for human life on Earth and Mars

Introduction

Having completed your Earth vs Mars Venn diagram should make it a lot easier to visualize what Mars and Earth have in common and how they are different. Now you are ready to think about what that potentially means for human life on Mars.

In this activity you will watch Mission video 18: Earth vs Mars once more, but this time you will focus on the part of the video which discusses the Goldilocks conditions for life on Earth and on Mars.


Mission video 18: Earth vs Mars

While you watch Mission video 18: Earth vs Mars this second time, look out for the answers to the following questions:

  1. 1. What are the four basic human needs?
  2. 2. What are the three Goldilocks conditions on Earth for human life?
  3. 3. Does Mars have breathable air for humans?
  4. 4. Does Mars have water?
  5. 5. Does Mars have food for humans?
  6. 6. Does Mars provide shelter for humans?

Your teacher will instruct you whether you will answer the questions: as part of a class discussion; as a group/paired discussion; or independently by writing your answers in your Big History School Junior journal (if you have been provided with one).


Download video


Activity 3.3.3 Review

Conclusion

Now that you have learned about the Goldilocks conditions for life on Earth and have considered whether Mars meets those conditions, you will set up a comparison table and begin to think about what that means for your Mars Mission.


Go to Activity 3.3.4   »

Course Glossary

accretion

The gradual process of matter being pulled together by gravity to make larger and larger clumps of matter.

adaptation

A special skill or physical feature which helps a species to survive and thrive in its environment. For example, a chameleon changing colour to camouflage itself.

aerial view

A view of something from the sky looking down.

agriculture

Also referred to as farming, agriculture is the practice of growing crops and raising animals. It is an innovation which has allowed human societies to expand and thrive.

AI

Artificial Intelligence (AI) is a type of technology which can perceive things, interpret them and make decisions in a similar way to humans.

amphibian

Animals that evolved from fish to have gills so that they can live in water and also live and breathe on land.

anthropologist

A scientist who studies humans and human behaviour.

asteroids

Rocky bodies which are too small to be called planets.

astronomer

A scientist who studies the Universe and everything in it.

atmosphere

A thin layer of gases, otherwise known as air, that surrounds Earth and other planets.

atoms

Tiny particles which make up everything in the Universe.

authority

Someone who knows a lot about a subject and whose views are respected.

battery storage

A large battery that stores electrical energy which can then be used when other energy sources are not available.

Big Bang theory

Theory about how the Universe began 13.8 billion years ago. All matter, time, space and energy came from the Big Bang.

Big History

The history of the entire Universe beginning 13.8 billion years ago.

biochemist

A scientist who studies the chemistry of living things.

biologist

A scientist who studies living things.

black hole

An area in space where gravity is so strong that nothing can escape from it – not even light.

brainstorming

A creative strategy for thinking about and sharing ideas to solve a challenge or task.

CBR

Cosmic Background Radiation (CBR) is the radiation left over from the initial energy of the Big Bang. It can be seen through powerful space telescopes.

chemical compounds

Chemical elements which have combined with different chemical elements. For example, hydrogen can combine with oxygen to create the chemical compound water (H2O).

chemical elements

Pure substances which are made from a single type of atom. For example, Helium.

chemist

A scientist who studies the substances that make up all the matter in the Universe.

claim

Information which is presented as fact – not an opinion.

cognitive

To do with mental activity such as thinking, using logic or remembering.

collective learning

The human ability to store and share and build on information from generation to generation.

comets

Balls of frozen gases, rock and dust which orbit the Sun.

community

A group of people who live together. They help each other and work together to solve problems.

compare

To look at what two or more things have in common with each other.

continental drift theory

A theory which states that the Earth’s continents were once joined together in one supercontinent, then broke up and slowly drifted apart.

contrast

To look at how two or more things are different to each other.

convergent boundary

Where two tectonic plates move towards each other.

cosmologist

A scientist who studies the structure and history of the Universe.

creative thinking

Thinking of new ways to solve problems, generate new explanations and/or create something original.

Critical thinking

Thinking which doesn’t rely on simply accepting what someone has said. It involves questioning, using logic and seeking information from experts before drawing a conclusion.

cross section

A view of something as if it has been sliced through with a knife.

digital technology

A term which covers electronic technologies such as computers, tablets and mobile phones.

disciplines

Different areas of knowledge, for example, natural sciences.

divergent boundary

Where two tectonic plates slide apart from each other.

Earth’s core

At its centre, Earth contains a solid inner core and a liquid outer core made of iron and nickel.

Earth’s crust

The layer that floats on top of the mantle and is made of lighter weight rocks and minerals.

electrical technology

Technologies which use electricity as their main power source, for example, light bulbs, electric motors and television.

energy sources

A resource which can be used to provide power. For example, fossil fuels like coal and oil; renewable resources like solar and wind or uranium for nuclear power.

engineer

An expert who designs and builds machines and structures.

evidence

Information which may support or disprove a claim.

evolution

The theory of evolution explains how all the species alive today generated from the first simple life forms on Earth.

exoplanets

Planets which orbit stars outside of our solar system.

expert

A person with a special skill or knowledge in a particular area.

flyby

A path followed by a spacecraft which has been sent close enough to a planet to record scientific data.

fossil fuels

A carbon- based material such as coal, oil, or natural gas that can be used as an energy source. Fossil fuels were originally formed when the remains of living organisms were buried and broken down by intense heat and pressure over millions of years.

gas giants

The four large outermost planets – Neptune, Uranus, Saturn and Jupiter – which are mostly made of lighter chemical elements like Hydrogen and Helium.

geologist

A scientist who analyses rocks, minerals and landforms.

Goldilocks conditions

The ‘just right’ conditions for life to exist. For example, Earth has the right temperature range, a protective atmosphere and liquid water.

gravity

The energy force which tries to pull two objects toward each other. The bigger an object is, the stronger its gravitational pull.

Homo sapiens

Modern humans who first appeared 300,000 years ago. We are homo sapiens.

hunters and gatherers

Human societies which move from place to place to hunt meat and gather fruit and vegetables to survive.

industrial technology

Machines which operate on a large scale by using energy sources such as water, steam power, oil and coal.

innovation

Using existing knowledge to come up with new technologies or new ways of doing things.

intelligent life

Beings from other planets who are able to think, learn and understand. Scientists continue to search for intelligent life out in the Universe.

intuition

A ‘gut feeling’ that a claim may be true or false.

Jovian planets

The term Jovian planets refers to the large gassy planets furthest from the Sun - Neptune, Uranus, Saturn and Jupiter. They are also known as gas giants.

Karman line

An imaginary line 100 kms above the Earth’s crust where it has been internationally agreed the Earth’s atmosphere ends and space begins.

KWHLAQ chart

A visible framework which uses a series of step-by-step questions to provide guidance through the creative thinking process.

lander

A spacecraft which has been designed to make a soft landing on a planet or moon etc.

logic

Carefully thinking about a claim to decide whether it makes sense.

mantle

The layer that surrounds the Earth’s core and is made of minerals and rocks which slowly flow in a sludge of melted iron.

matter

Everything around us that has weight and takes up space. All matter is made up of atoms.

meteoroids

Otherwise known as shooting stars, meteoroids are small space rocks which burn up as they enter Earth’s atmosphere.

module

A self-contained unit which can be joined together with other units to build something more complex.

multi-planetary species

A species which lives on more than one planet. Humans could become the first known multi-planetary species by establishing a human habitat on Mars.

multicellular organisms

A complex organism which is made up of more than one cell. For example, animals and plants.

natural selection

The process by which individuals in a species who have more successful adaptations have more children, therefore passing their successful adaptations on to future generations.

nuclear fusion

The process of hydrogen atoms being crushed together in a star’s hot centre, releasing heat and energy for billions of years.

orbiter

A spacecraft designed to orbit a planet and collect scientific data over a long period of time.

overpopulation

When a population grows too big for the available resources, for example, food. Humans have, in the past, solved potential problems through innovations such as agriculture.

ozone layer

An invisible layer in Earth’s upper atmosphere which helps to protect us from the Sun’s harmful ultra-violet rays.

periodic table

A diagram of all the chemical elements in the Universe. It was created by a Russian chemist named Dmitri Mendeleev.

quasars

Quasi Stellar Objects (Quasars) are believed to be the brightest and most distant objects in the Universe.

radiation

The transfer of energy (heat, sound or light) through waves. It can come from cosmic rays or from the Earth. Too much exposure to radiation is harmful to humans.

redshift

When a star or galaxy moves away, its light waves are stretched out and it has a red glow. This is called redshift and provides evidence that the Universe is expanding.

robotics

A type of technology which allows machines to be programmed to move and complete set tasks.

rocky planets

The four small inner planets – Mercury, Venus, Earth and Mars – which are mostly made of heavier chemical elements like iron.

rover

A moving robot which is sent to the surface of another planet to explore, collect scientific data and samples.

self-sustaining

Being able to exist for a long time without outside help by using resources responsibly.

single-celled organisms

A simple organism which is made up of only one cell. For example, simple bacteria.

singularity

The extremely small point which contained the ingredients for everything in the Universe. Everything was crushed together in this singularity at the moment of the Big Bang.

sol

The name of a solar day on Mars, which is 24.65 hours.

star

A massive sphere of very hot gas which makes its own light and energy through nuclear fusion.

supernova

The spectacular explosion which occurs when a massive star dies. It blows chemical elements out into the Universe.

survive

To be able to continue to live. For example, having enough food to avoid dying of starvation.

technology

New tools or methods, developed through the use of scientific knowledge, which can be used to solve problems.

tectonic plates

The large solid-rock moving pieces which make up the Earth’s crust.

thrive

To be able to grow, be successful and become stronger. For example, humans thrive when they are part of a connected community.

timeline

A graphic which includes a list of events placed in the order that they happened.

transform boundary

Where two tectonic plates meet and try to move past each other.

uranium

A chemical element which is found in the Earth’s crust and is used as an energy source in nuclear power plants.

venn diagram

A visual graphic which can be used to compare and contrast two different things.

white dwarf

When a non-massive star runs out of fuel for nuclear fusion it collapses into itself. The leftover core is a compact star called a white dwarf.

x-ray telescope

A type of telescope which works by receiving x-ray signals. It is mainly used to observe space objects and events such as the Sun, stars and supernovae.

Yucatan Peninsula

Location of the Chicxulub Crater where a giant meteor landed 66 million years ago. Scientists think this meteor strike led to the extinction of the dinosaurs.

zinc

One of the most common chemical elements in the Earth’s crust.

2Al

Activity 3.3.4 Objectives

Learning Goals

  • Compare and contrast Goldilocks conditions for human life on Earth and Mars
  • Complete an Earth vs Mars Goldilocks conditions table

Introduction

For the final activity in Mission Control Report B, you will take what you have learned about the Goldilocks conditions for life on Earth and on Mars to complete a comparative table. Completing the table will help you begin to plan for human life on your Mars Mission.

Before you begin though, you will refer to the Reading: Does Mars have the Goldilocks conditions for life? which recaps a lot of the important information you’ll need to complete this activity.


Reading: Does Mars have the Goldilocks conditions for life?

Your teacher will give you a copy of the Reading: Does Mars have the Goldilocks conditions for life? Take 5 minutes to read it carefully and use a highlighter to highlight the main points.

You will use the information in this reading, along with everything else you’ve learned during your Mars Mission so far, to complete your Table: Earth vs Mars Goldilocks conditions worksheet.

Reading 3.3.4_ Does Mars have the Goldilocks conditions for life - AUS


Table: Earth vs Mars Goldilocks conditions

We’ve come to a very important step in preparing for your Mission. Using the Table: Earth vs Mars Goldilocks conditions worksheet, you need to work out if Mars has the Goldilocks conditions for life, and if not, what that means for human life on your Mars Mission:

  • Complete the first column of the table by listing the four basic needs for human life
  • In the second column describe how these basic needs are met on Earth
  • Circle Yes or No in the third column based on whether you believe Mars has the Goldilocks conditions to meet each of those needs. Explain why or why not
  • Finally, based on whether you think Mars has the Goldilocks conditions for each of our four basic humans needs, write down in the fourth column what this means for humans who travel to Mars

The first row of the table has been completed as an example.

Table: Earth vs Mars Goldilocks Conditions


Activity 3.3.4 Review

Conclusion

Now that you’ve started to think about the lack of Goldilocks conditions on Mars and the challenges this creates for human life there, it’s a good time to start thinking about possible solutions. Do you have any ideas yet?

Refer back to the Chart: KWHLAQ and add what you have learned during this Mission Control Report to the “L - What have you Learned?” column. To refresh your memory there is a copy in Helpful Resources.

Also, check whether you have answered any more of the questions in the “W - What do you Want to know?” column.

Helpful Resources

Chart: KWHLAQ


Go to Learning summary   »

Course Glossary

accretion

The gradual process of matter being pulled together by gravity to make larger and larger clumps of matter.

adaptation

A special skill or physical feature which helps a species to survive and thrive in its environment. For example, a chameleon changing colour to camouflage itself.

aerial view

A view of something from the sky looking down.

agriculture

Also referred to as farming, agriculture is the practice of growing crops and raising animals. It is an innovation which has allowed human societies to expand and thrive.

AI

Artificial Intelligence (AI) is a type of technology which can perceive things, interpret them and make decisions in a similar way to humans.

amphibian

Animals that evolved from fish to have gills so that they can live in water and also live and breathe on land.

anthropologist

A scientist who studies humans and human behaviour.

asteroids

Rocky bodies which are too small to be called planets.

astronomer

A scientist who studies the Universe and everything in it.

atmosphere

A thin layer of gases, otherwise known as air, that surrounds Earth and other planets.

atoms

Tiny particles which make up everything in the Universe.

authority

Someone who knows a lot about a subject and whose views are respected.

battery storage

A large battery that stores electrical energy which can then be used when other energy sources are not available.

Big Bang theory

Theory about how the Universe began 13.8 billion years ago. All matter, time, space and energy came from the Big Bang.

Big History

The history of the entire Universe beginning 13.8 billion years ago.

biochemist

A scientist who studies the chemistry of living things.

biologist

A scientist who studies living things.

black hole

An area in space where gravity is so strong that nothing can escape from it – not even light.

brainstorming

A creative strategy for thinking about and sharing ideas to solve a challenge or task.

CBR

Cosmic Background Radiation (CBR) is the radiation left over from the initial energy of the Big Bang. It can be seen through powerful space telescopes.

chemical compounds

Chemical elements which have combined with different chemical elements. For example, hydrogen can combine with oxygen to create the chemical compound water (H2O).

chemical elements

Pure substances which are made from a single type of atom. For example, Helium.

chemist

A scientist who studies the substances that make up all the matter in the Universe.

claim

Information which is presented as fact – not an opinion.

cognitive

To do with mental activity such as thinking, using logic or remembering.

collective learning

The human ability to store and share and build on information from generation to generation.

comets

Balls of frozen gases, rock and dust which orbit the Sun.

community

A group of people who live together. They help each other and work together to solve problems.

compare

To look at what two or more things have in common with each other.

continental drift theory

A theory which states that the Earth’s continents were once joined together in one supercontinent, then broke up and slowly drifted apart.

contrast

To look at how two or more things are different to each other.

convergent boundary

Where two tectonic plates move towards each other.

cosmologist

A scientist who studies the structure and history of the Universe.

creative thinking

Thinking of new ways to solve problems, generate new explanations and/or create something original.

Critical thinking

Thinking which doesn’t rely on simply accepting what someone has said. It involves questioning, using logic and seeking information from experts before drawing a conclusion.

cross section

A view of something as if it has been sliced through with a knife.

digital technology

A term which covers electronic technologies such as computers, tablets and mobile phones.

disciplines

Different areas of knowledge, for example, natural sciences.

divergent boundary

Where two tectonic plates slide apart from each other.

Earth’s core

At its centre, Earth contains a solid inner core and a liquid outer core made of iron and nickel.

Earth’s crust

The layer that floats on top of the mantle and is made of lighter weight rocks and minerals.

electrical technology

Technologies which use electricity as their main power source, for example, light bulbs, electric motors and television.

energy sources

A resource which can be used to provide power. For example, fossil fuels like coal and oil; renewable resources like solar and wind or uranium for nuclear power.

engineer

An expert who designs and builds machines and structures.

evidence

Information which may support or disprove a claim.

evolution

The theory of evolution explains how all the species alive today generated from the first simple life forms on Earth.

exoplanets

Planets which orbit stars outside of our solar system.

expert

A person with a special skill or knowledge in a particular area.

flyby

A path followed by a spacecraft which has been sent close enough to a planet to record scientific data.

fossil fuels

A carbon- based material such as coal, oil, or natural gas that can be used as an energy source. Fossil fuels were originally formed when the remains of living organisms were buried and broken down by intense heat and pressure over millions of years.

gas giants

The four large outermost planets – Neptune, Uranus, Saturn and Jupiter – which are mostly made of lighter chemical elements like Hydrogen and Helium.

geologist

A scientist who analyses rocks, minerals and landforms.

Goldilocks conditions

The ‘just right’ conditions for life to exist. For example, Earth has the right temperature range, a protective atmosphere and liquid water.

gravity

The energy force which tries to pull two objects toward each other. The bigger an object is, the stronger its gravitational pull.

Homo sapiens

Modern humans who first appeared 300,000 years ago. We are homo sapiens.

hunters and gatherers

Human societies which move from place to place to hunt meat and gather fruit and vegetables to survive.

industrial technology

Machines which operate on a large scale by using energy sources such as water, steam power, oil and coal.

innovation

Using existing knowledge to come up with new technologies or new ways of doing things.

intelligent life

Beings from other planets who are able to think, learn and understand. Scientists continue to search for intelligent life out in the Universe.

intuition

A ‘gut feeling’ that a claim may be true or false.

Jovian planets

The term Jovian planets refers to the large gassy planets furthest from the Sun - Neptune, Uranus, Saturn and Jupiter. They are also known as gas giants.

Karman line

An imaginary line 100 kms above the Earth’s crust where it has been internationally agreed the Earth’s atmosphere ends and space begins.

KWHLAQ chart

A visible framework which uses a series of step-by-step questions to provide guidance through the creative thinking process.

lander

A spacecraft which has been designed to make a soft landing on a planet or moon etc.

logic

Carefully thinking about a claim to decide whether it makes sense.

mantle

The layer that surrounds the Earth’s core and is made of minerals and rocks which slowly flow in a sludge of melted iron.

matter

Everything around us that has weight and takes up space. All matter is made up of atoms.

meteoroids

Otherwise known as shooting stars, meteoroids are small space rocks which burn up as they enter Earth’s atmosphere.

module

A self-contained unit which can be joined together with other units to build something more complex.

multi-planetary species

A species which lives on more than one planet. Humans could become the first known multi-planetary species by establishing a human habitat on Mars.

multicellular organisms

A complex organism which is made up of more than one cell. For example, animals and plants.

natural selection

The process by which individuals in a species who have more successful adaptations have more children, therefore passing their successful adaptations on to future generations.

nuclear fusion

The process of hydrogen atoms being crushed together in a star’s hot centre, releasing heat and energy for billions of years.

orbiter

A spacecraft designed to orbit a planet and collect scientific data over a long period of time.

overpopulation

When a population grows too big for the available resources, for example, food. Humans have, in the past, solved potential problems through innovations such as agriculture.

ozone layer

An invisible layer in Earth’s upper atmosphere which helps to protect us from the Sun’s harmful ultra-violet rays.

periodic table

A diagram of all the chemical elements in the Universe. It was created by a Russian chemist named Dmitri Mendeleev.

quasars

Quasi Stellar Objects (Quasars) are believed to be the brightest and most distant objects in the Universe.

radiation

The transfer of energy (heat, sound or light) through waves. It can come from cosmic rays or from the Earth. Too much exposure to radiation is harmful to humans.

redshift

When a star or galaxy moves away, its light waves are stretched out and it has a red glow. This is called redshift and provides evidence that the Universe is expanding.

robotics

A type of technology which allows machines to be programmed to move and complete set tasks.

rocky planets

The four small inner planets – Mercury, Venus, Earth and Mars – which are mostly made of heavier chemical elements like iron.

rover

A moving robot which is sent to the surface of another planet to explore, collect scientific data and samples.

self-sustaining

Being able to exist for a long time without outside help by using resources responsibly.

single-celled organisms

A simple organism which is made up of only one cell. For example, simple bacteria.

singularity

The extremely small point which contained the ingredients for everything in the Universe. Everything was crushed together in this singularity at the moment of the Big Bang.

sol

The name of a solar day on Mars, which is 24.65 hours.

star

A massive sphere of very hot gas which makes its own light and energy through nuclear fusion.

supernova

The spectacular explosion which occurs when a massive star dies. It blows chemical elements out into the Universe.

survive

To be able to continue to live. For example, having enough food to avoid dying of starvation.

technology

New tools or methods, developed through the use of scientific knowledge, which can be used to solve problems.

tectonic plates

The large solid-rock moving pieces which make up the Earth’s crust.

thrive

To be able to grow, be successful and become stronger. For example, humans thrive when they are part of a connected community.

timeline

A graphic which includes a list of events placed in the order that they happened.

transform boundary

Where two tectonic plates meet and try to move past each other.

uranium

A chemical element which is found in the Earth’s crust and is used as an energy source in nuclear power plants.

venn diagram

A visual graphic which can be used to compare and contrast two different things.

white dwarf

When a non-massive star runs out of fuel for nuclear fusion it collapses into itself. The leftover core is a compact star called a white dwarf.

x-ray telescope

A type of telescope which works by receiving x-ray signals. It is mainly used to observe space objects and events such as the Sun, stars and supernovae.

Yucatan Peninsula

Location of the Chicxulub Crater where a giant meteor landed 66 million years ago. Scientists think this meteor strike led to the extinction of the dinosaurs.

zinc

One of the most common chemical elements in the Earth’s crust.

2Al

Learning summary

MISSION CONTROL REPORT B: An Earth vs Mars comparison

In Mission Control Report B you compared and contrasted the features of Earth and Mars as well as the Goldilocks Conditions for human life on Earth and Mars.

Now it’s time to revisit your Mission Control Report B learning goals and read through them again carefully.

As you read each learning goal, tick the check box beside it if you are confident you have achieved that learning goal.

You’ll find that some learning goals are harder to achieve than others. If you find that there are learning goals that you’re not confident you’ve achieved yet, you may like to re-watch the Mission video which relates to that learning goal and/or ask your teacher for help.

Junior Post 3.3



2Al